Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars

Elisabeth M. Hausrath* Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
Alexis K. Navarre-Stitchler School of Earth and Environmental Sciences, University of Kentucky, Lexington, Kentucky 40506, USA
Peter B. Sak Department of Geology, Dickinson College, Carlisle, Pennsylvania 17013, USA
Carl I. Steefel Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Susan L. Brantley Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA

ABSTRACT
Where Martian rocks have been exposed to liquid water, chemistry versus depth profiles could elucidate both Martian climate history and potential for life. The persistence of primary minerals in weathered profiles constrains the exposure time to liquid water; on Earth, mineral persistence times range from ~10 k.y. (olivine) to ~250 k.y. (glass) to ~1 m.y. (pyroxene) to ~5 m.y. (plagioclase). Such persistence times suggest mineral persistence minima on Mars. However, Martian solutions may have been more acidic than on Earth. Relative mineral weathering rates observed for basalt in Svalbard (Norway) and Costa Rica demonstrate that laboratory pH trends can be used to estimate exposure to liquid water both qualitatively (mineral absence or presence) and quantitatively (using reactive transport models). Qualitatively, if the Martian solution pH >~2, glass should persist longer than olivine; therefore, persistence of glass may be a pH indicator. With evidence for the pH of weathering, the reactive transport code CrunchFlow can quantitatively calculate the minimum duration of exposure to liquid water consistent with a chemical profile. For the profile measured on the surface of the exposed Martian rock known as Humphrey in Gusev Crater, the calculated exposure time is ~22 k.y., which is a minimum due to physical erosion. If correct, this estimate is consistent with short-term, episodic alteration accompanied by ongoing surface erosion. More of these depth profiles should be measured to illuminate the weathering history of Mars.

Keywords: Mars, basalt, weathering, reactive transport modeling, weathering rind, pH.

INTRODUCTION
To understand whether life could have existed or still exists on Mars, we need to be able to use data such as those from the Mars Exploration Rovers (Herkenhoff et al., 2004; Squyres et al., 2004; Haskin et al., 2005), the Mars Express satellite (Poulet et al., 2005; Bibring et al., 2006), and meteorites (Gooding et al., 1991; Treiman et al., 1993; Treiman, 2005) to constrain the duration and distribution of liquid water. Such data document the presence of primary silicates such as olivine (Hoeven et al., 2003), pyroxene (Mustard et al., 1997), plagioclase (Bandfield, 2002), and glass (Bandfield et al., 2000; Ruff et al., 2006) that may have weathered to secondary minerals (Christensen et al., 2000; Poulet et al., 2005; Bibring et al., 2006). Here we use both qualitative (mineral absence or presence) and quantitative (reactive transport modeling) approaches to interpret basalt weathering on Earth and on Mars.

Mineral Persistence
Minerals persist for different lengths of time in terrestrial weathering environments (Goldich, 1938). To quantify how long a mineral persists before it is solubilized (mineral persistence time) on Earth, we examined the lengths of time that minerals persist in dated soils and chronosequences (Fig. 1; GSA Data Repository1). We observed that persistence times varied from ~10 k.y. (olivine) to ~250 k.y. (glass) to ~1 m.y. (pyroxene) to ~5 m.y. (plagioclase), consistent with Goldich (1938). The relative order of these mineral persistences is largely consistent with dissolution experiments (Fig. 2) at pH ~5.5–7. Mineral composition affects the observed persistence times: for example, relative persistence times for plagioclase in Figure 1, which includes all compositions, are longer than in Figure 2, where only bytownite is represented.

Given the higher water fluxes, erosion rates, and tectonic activity on Earth, mineral persistence times depicted in Figure 1 are probably minimum estimates of Martian mineral persistence. However, such extrapolations depend upon the pH of weathering (Fig. 2) and such pH is poorly constrained on Mars; weathering pH may have been very acidic (Elwood Madden et al., 2004; Klingelhöfer et al., 2004; Tosca et al., 2004; Hurowitz et al., 2006) or close to neutral (Poulet et al., 2005; Bibring et al., 2006). The pH of a weathering solution strongly affects relative mineral persistences (Fig. 2). For example, at extremely low pH, laboratory experiments (Fig. 2) predict dissolution rates of basalt glass > olivine. For 2 < pH < 8, however, olivine dissolves more quickly than basalt glass.

Persistence times of diopside and bytownite should also be lower than glass at low pH but roughly the same at pH ~4–6. Plagioclase dissolution rates increase with increasing Ca content (Blum and Stillings, 1995), but reported rates for pyroxene do not vary strongly with composition.

To determine if a diagram such as Figure 2 is useful to predict Martian basalt weathering, we first compare its predictions to basalt weathering in Costa Rica and Svalbard. In Costa Rica pyroxene alters before plagioclase, which is consistent with the measured pH of pore waters (~4.7) (Fig. 2). On weathered surfaces in Svalbard, Na-containing glass is weathered to depths of ~250 μm (Figs. 3 and 4). Olivinephenocrysts intersecting the surface do not protrude significantly nor do they show embayment (Fig. 3B). Smoothing of ~20–40 μm of the phenocryst roughness at the rock surface yields a minimum

1GSA Data Repository item 2008017, supplementary methods and description, is available online at www.geosociety.org/pubs/ft2008.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

© 2008 The Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.

Geology, January 2008; v. 36; no. 1; p. 67–70; doi: 10.1130/G24238A.1; 4 figures; Data Repository item 2008017.
Figure 2. Log dissolution rates of silicates versus pH. Forsterite, basalt glass, and diopside rates are from Bandstra and Brantley (2008). Bytownite is estimated from albite, and fayalite from forsterite (Bandstra and Brantley, 2008) (Data Repository; see footnote 1). Ranges labeled Svalbard, Costa Rica, and Mars represent estimated pH from soil measurements (Svalbard and Costa Rica) or the stability field of jarosite (Mars; Elwood Madden et al., 2004).

Figure 3. Weathering rinds on basalt samples. A: Computed tomography image of a weathering rind developed over 35 k.y. (thickness of average complete rind = 1.2 cm; some rind detached during sampling) on basalt clast in Costa Rica (Sak et al., 2004). Unweathered core (gray) is rimmed with Fe and Al oxides of the weathering rind (dark material). Weathering increases porosity (black areas). B: Large olivine grain (Svalbard) (upper left, imaged within weathering rind on Svalbard basalt using backscattered electron micrography) displays smooth outer surface (a) without a zoned rim (b) (see text). Black areas present to ~250 μm (white line) are pore space created by glass dissolution. Double-headed arrow indicates example of mineral aggregate used to estimate surface area (Data Repository; see footnote 1). C: Microscopic image of inferred weathering rind (dashed white line; McSween et al., 2004) on abraded rock Humphrey on Mars (http://marsrovers.jpl.nasa.gov/gallery/all/spirit_p060.html). Arrow indicates an inferred olivine grain (McSween et al., 2006). Image is ~2 cm across.

estimate of the weathering advance distance due to free-face dissolution. The observation that glass is dissolving deeper (more quickly) than olivine is largely consistent with the measured pore-fluid pH range for Svalbard (~7–9) (Fig. 2).

Because relative mineral weathering in Costa Rica and Svalbard follows pH trends documented by dissolution experiments, extrapolation of these trends to the Martian surface should reveal pH conditions of Martian weathering. Mineral compositions on Mars range from intermediate to calcic plagioclase (Bandfield, 2002; McSween et al., 2004). Both high- and low-Ca pyroxenes have been detected (Mustard et al., 1997; Hamilton et al., 2003; Bibring et al., 2005; McSween et al., 2006). Glass of a basaltic andesite composition, documented in a Martian meteorite (Greshake et al., 2004), would dissolve only slightly more slowly than the basalt glass dissolution line in Figure 2. The diopside dissolution line represents a good estimate for dissolution of Martian pyroxenes. The plagioclase dissolution rate may be up to one order of magnitude lower than the plotted line for bytownite. At the low pH values suggested for Mars, relative weathering of glass and olivine may yield constraints on pH. For example, Mangold et al. (2007) proposed that relatively unaltered olivine may be found with altered glass in the Nili Fossae region of Mars. Such dissolution of glass without alteration of olivine is consistent (Fig. 2) with either very low or high pH.

Reactive Transport Modeling

Where concentration-depth data are available such as on the rock Humphrey in Gusev Crater on Mars (Gellert et al., 2006), it is possible to calculate weathering duration using reactive transport codes. We used CrunchFlow (Maher et al., 2006) to forward model weathering rinds from Costa Rica, Svalbard, and Humphrey (Fig. 4) in one dimension using laboratory rates and diffusivities (Data Repository). For the Costa Rica basalt, dissolution of plagioclase and pyroxene and precipitation of Fe and Al oxides in the reaction front were modeled (Fig. 4A). The weathering rock was modeled as 66% plagioclase + 26% pyroxene + 2.6% quartz + 1.8% alkali feldspar + 1% magnetite + 1.5% ilmenite + 1% porosity. Secondary minerals allowed to precipitate include kaolinite, Fe(OH)₃, gibbsite, and siderite. CrunchFlow was similarly used to fit dissolution of Na-containing glass in Svalbard where the weathering rock was modeled as 25% glass + 73% inert mineral + 2% porosity because only glass was observed to dissolve (Appendix 1). No secondary minerals were included since few were observed. This implicitly assumes that while olivine dissolves by free-face dissolution at the surface, its dissolution rate within the rock is negligible relative to glass. The model fit to the glass dissolution is consistent with an inferred surface retreat of ~0.4 mm (Fig. 4B), consistent with petrographic observations of spalling (Data Repository).

The alpha particle X-ray spectrometers on the Mars Exploration Rovers have measured chemistry with depth in drilled holes for many rocks (Gellert et al., 2006). When profiles are normalized to Ti, negative values of the dimensionless mass-element-transfer coefficient τ_{Ti,j} (Data Repository) for elements such as Mg, Fe, Ca, and P are observed. Mg and Fe loss from the inferred weathering rind on Mars rock Humphrey is consistent with olivine loss (Hurowitz et al., 2006). Humphrey is inferred to contain plagioclase,
pyroxene, and Fo$_{92}$ with up to 10% high-silica glass (Ruff et al., 2006). The weathering rind on Humphrey (McSween et al., 2004; Gellert et al., 2006) (Fig. 3) is modeled here because abrasion reached unaltered parent material (Gellert et al., 2006), and forward modeling relies upon knowledge of parent material.

All Fe and Mg loss was attributed to olivine dissolution, similar to our earlier assumption of Na loss due to glass dissolution for Svalbard. Fe and Mg (McSween et al., 2004) were assigned to Fo$_{90}$ and Fo$_{92}$, the two probable end members of zoning in Humphrey (McSween et al., 2006). The olivine is probably zoned; this simplification facilitates modeling. The assumption of Fo$_{90}$ (14%) and Fo$_{92}$ (11%) results in a rock that is 25% olivine (McSween et al., 2004, 2006). Following our approach to Svalbard, the rest of the rock (72%) is assumed to be inert.

The shortest time that allowed a fit to the reaction front was 22 k.y. with a modeled weathering advance rate of 108 m yr$^{-1}$. In contrast to Svalbard, the front was fit without surface retreat. However, Mars undergoes physical erosion at rates of 0.04 x 108 (Golombek and Bridges, 2000) to 3 x 103 m yr$^{-1}$ (Sagan, 1973). Since the chemical weathering advance rate is within the range of physical erosion rates, the profile could represent steady-state thickness (weathering rate = erosion rate). In any case, it is likely that erosion removed some of the surface of Humphrey, implying that the calculated 22 k.y. is a minimum weathering duration.

This 22 k.y. weathering duration is within a factor of ~10 of the olivine persistence times in terrestrial and laboratory environments (Fig. 1), as well as the time estimates by Stopar et al. (2006) for similar conditions on Mars (1.6–19 k.y.). The 22 k.y. time is much shorter than the age of the Adirondack class (Adirondack, Humphrey, and Mazatzal) rocks in Gusev Crater, suggesting that the presence of water in this location was extremely brief, or that physical weathering is occurring at close to the same rates as chemical weathering. The 22 k.y. time of weathering may also represent summation of sporadic wet time periods interspersed with much longer dry periods, as inferred for meteorites (e.g., Treiman et al., 1993). Such short-lived and episodic alteration may be more consistent with alteration such as that resulting from impacts, rather than more long-lived aqueous alteration such as surface oceans. The weathering duration for diffusion-dominated transport used in our model is also consistent with low water-rock ratios inferred for Adirondack class rocks in Gusev crater, such as acid-sulfate weathering or thin films of water under snow or frost (Hurowitz et al., 2006).

The hole on Humphrey is one of the shallowest drilled by the Spirit Rover (Arvidson et al., 2006). A number of studies (Ming et al., 2006; Morris et al., 2006) have found that while the Adirondack class rocks (which include Humphrey), are minimally weathered, weathering in Columbia Hills was much more intensive. Satellite data document phyllosilicates (Poulet et al., 2005; Bibring et al., 2006), hematite, and sulfate (Christensen et al., 2000; Bandfield, 2002; Gendrin et al., 2005). Depth profiles in such areas might yield more information regarding the aqueous history of Mars.

CONCLUSIONS

Terrestrial mineral persistence data suggest minimum persistence times for olivine (~10 k.y.), glass (~250 k.y.), pyroxene (~1 m.y.), and plagioclase (~5 m.y.) on Mars. These relative mineral weathering rates and relative mineral weathering rates in Svalbard (Norway) and Costa Rica are consistent with pH values of weathering solutions. This suggests that relative persistences on Mars (particularly olivine and glass) may be used to constrain the pH of the water. The successful use of reactive transport modeling to match reaction fronts in basalts on Earth lends confidence to the utility of using reactive transport modeling for Mars. The CrunchFlow fit of the weathering rind on Humphrey requires 22 k.y. of weathering, and could represent steady-state thickness (weathering rate = erosion rate). In any case, the 22 k.y. is a minimum time of exposure to liquid water for this Mars rock due to the presence of physical weathering, and suggests short-term or episodic aqueous alteration in this location. This interpretation of weathering profiles on Mars suggests the type of depth profiles that could be collected to further interpret the aqueous history of Mars.

ACKNOWLEDGMENTS

We thank J. Moore, J. Bandstra, M. Angelone, J. Cantolino, D. Egger, J. Mustard, and the Arctic Mars Analog Svalbard Expedition (AMASE). This work was supported by the Worldwide Universities Network (WUN), the Biogeochemical Research Initiative for Education (BRIE), National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship (IGERT) grant DGE-9972759, NSF grant CHE-0431328, the Pennsylvania State Astrobiology Research Center (PSARC), National Aeronautics and Space Administration (NASA) grant NNG05G77G, a NASA Astrobiology Institute Research Fellowship, and an NSF Graduate Research Fellowship (Hausbrath). We appreciate the thoughtful reviews by J. Bandfield, T. Lyons, H. McSween, and J. Taylor.

REFERENCES CITED
